Product Description

Product Description

 

Drop Forged Chains “Y” Serial

 

FEATURES

• It consists of forged steel links, which can be equipped with various plastic or steel scrapers. The connection pin between these links is in a circlip version.
• Special heat treated alloy steel,drop forged and precision machined, with case hardened.
• High strength, strong load-carrying capability.
• Extremely hard exterior surface and superior wear
resistance.

TECHNICAL SPECIFICATIONS

Model P
(mm)
H
(mm)
B
(mm)
D
(mm)
b
(mm)
T
(mm)
Breaking Load
(Min.)
Material
P100 100 30 33 14 15.5 13 140KN 40Cr
P125-B 125 35 34 17 17 8 150KN 40Cr
P142 142 50.8 43 25 19 12.2 180KN 20CrMnTi
300KN 40Cr
P142H 142 50 62 25 29 15 280KN 20CrMnTi
460KN 40Cr
P160 160 40 48 20 22.5 20 240KN 40Cr
P200 200 64 50 32 23 15 390KN 40Cr
P200-E 200 45 42 20 20 12.2 200KN 40Cr

Note: Customised sizes and material are available CHINAMFG request

 

Roller Conveyor Chains

FEATURES

• It consists of a combination of inner and outer links. 
• The bush/pin connections between the links are available in a circlip, split pin, or a riveted version. 
• The steel scrapers can be either bent or welded. 
• UHMWPE lights are suggested to attach to the scrapers for more eficiency and high wear resistance.

GLF Type

TECHNICAL SPECIFICATIONS

Model Pitch
(P)
Scraper
Distance
(P1)
Inner
Width
(b)
Plate
Width
(B)
T1 T2 Roller
Dia.
(D)
Bush
Dia.
(D2)
Pin Dia
(D1)
Chain
Width
(L)
E1 E2 Number
of Holes
(n)
d Breaking
Load in
KN
(Min.)
GLF66.675
(6)D×182
66.675 266.7 26 30 6 6 22.23   12.7 182 90 150 4 9 130
GLF66.675
(6)D×215
66.675 266.7 26 30 6 6 22.23   12.7 215 95 195 4 9 130
GLF66.675
(6)D×295
66.675 266.7 26 30 6 6 22.23   12.7 295 95 195 4 9 130
GLF100
(6)D×170
100 200 38 40 6 6 36 21.6 16 170 115   2 9 220
GLF100
(6)D×225
100 200 38 40 6 6 36 21.6 16 225 104 194 4 9 220
GLF100
(6)D×294
100 200 38 40 6 6 36 21.6 16 294 115 245 4 9 220
GLF100
(5)×225
100 200 28 30 5 5 22.23   14.27 225 95 195 4 9 90
GLF125
(8)D×285
125 500 50 50 8 8 32   19.9 285 155 255 4 9 220
GLF125
(6)×235
125 250 32.5 40 6 6 28.58 20 14.27 235 95 195 4 9 170
GLF160
(6)×290
160 320 27 45 6 6 32 20 14.27 290 193   2 9 193

GLR Type

TECHNICAL SPECIFICATIONS

Model Pitch
(P)
Scraper
Distance
(P1)
Inner
Width
(b)
Plate
Width
(B)
T1 T2 Roller
Dia.
(D)
Bush
Dia.
(D2)
Pin Dia
(D1)
Chain
Width
(L)
E1 E2 Number
of Holes
(n)
d Breaking
Load in
KN
(Min.)
GLR66.675 66.675 266.7 27.5 30 6 6 24   13 130 102 32 4 9 90
GLR100 100 200 38 40 6 6 36 21.6 16 130 102 32 4 9 220

 

 
Other products of our conveyor parts:

 

Could you please send me inquiry for details?

 

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Structure: Roller Chain
Surface Treatment: Oxygenation
Transport Package: Pallet
Specification: GLF, GLR
Trademark: Yutung
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

conveyor

Can a conveyor chain be used in automotive assembly lines?

Yes, a conveyor chain can be effectively used in automotive assembly lines. Here are the reasons why:

1. Efficient Material Handling:

– Conveyor chains provide a reliable and efficient means of transporting automotive components and parts along the assembly line. They can handle heavy loads and withstand the demanding requirements of automotive manufacturing.

2. Versatility:

– Conveyor chains offer versatility in terms of design and configuration. They can be customized to accommodate various assembly processes, such as body welding, painting, assembly, and final inspection.

3. Precise Positioning:

– Conveyor chains allow precise positioning and synchronization of automotive components, ensuring accurate assembly and alignment during the production process. This helps maintain consistent quality and reduces errors.

4. Automation Integration:

– Conveyor chains can be easily integrated with automation systems in automotive assembly lines. They can work in conjunction with robotic arms, vision systems, and other automated equipment to optimize the production process and improve efficiency.

5. Assembly Line Flexibility:

– Conveyor chains provide flexibility in terms of line configuration and layout. They can be designed to accommodate different assembly line layouts, including straight sections, curves, inclines, and declines, to meet the specific requirements of automotive assembly processes.

6. Space Optimization:

– Conveyor chains help optimize space utilization in automotive assembly plants. They can be designed to navigate around existing equipment and infrastructure, making efficient use of available floor space.

7. Safety:

– Conveyor chains are designed with safety features to protect operators and prevent accidents. Emergency stop controls, guarding, and interlocking mechanisms ensure the safe operation of the assembly line.

8. Increased Production Speed:

– By using conveyor chains, automotive assembly lines can achieve higher production speeds, allowing for faster manufacturing cycles and increased output.

Overall, conveyor chains play a crucial role in enhancing the efficiency, productivity, and safety of automotive assembly lines, contributing to the smooth and streamlined production of vehicles.

conveyor

How do you prevent corrosion in conveyor chains?

Preventing corrosion in conveyor chains is essential for maintaining their performance and prolonging their lifespan. Here are some effective measures to prevent corrosion:

1. Material Selection: Choose conveyor chains made from corrosion-resistant materials such as stainless steel, plastic, or coatings specifically designed to resist corrosion. These materials offer better protection against rust and corrosion compared to standard steel chains.

2. Proper Lubrication: Apply a suitable lubricant to the conveyor chain regularly. Lubrication creates a protective barrier that helps prevent moisture and contaminants from reaching the metal surface, reducing the risk of corrosion. Select a lubricant that provides corrosion protection properties and is compatible with the chain material.

3. Environmental Controls: Control the operating environment to minimize exposure to corrosive elements. Implement measures such as humidity control, proper ventilation, and protection from direct contact with water or chemicals. Consider using covers or enclosures to shield the conveyor chain from environmental factors that can accelerate corrosion.

4. Surface Treatments: Apply corrosion-resistant coatings or treatments to the conveyor chain. These coatings can provide an additional protective layer that acts as a barrier against moisture and corrosive substances. Examples of surface treatments include zinc plating, galvanizing, or epoxy coatings.

5. Regular Inspections and Cleaning: Regularly inspect the conveyor chain for signs of corrosion or damage. Remove any accumulated dirt, debris, or corrosive substances promptly. Cleaning the chain helps prevent the buildup of contaminants that can accelerate corrosion.

6. Preventive Maintenance: Implement a preventive maintenance program that includes regular cleaning, lubrication, and inspection of the conveyor chain. This proactive approach helps identify and address any potential corrosion issues early on, preventing further damage.

7. Proper Storage: When not in use, store the conveyor chains in a dry and controlled environment. Protect them from exposure to moisture, humidity, and corrosive substances. Use appropriate storage methods, such as hanging the chains or storing them in sealed containers.

By following these preventive measures, you can significantly reduce the risk of corrosion in conveyor chains, ensuring their optimal performance and longevity.

conveyor

How does a conveyor chain compare to other types of conveyor systems?

Conveyor chains are one of the common types of conveyor systems used in various industries. They offer specific advantages and characteristics that differentiate them from other types of conveyor systems.

1. Versatility: Conveyor chains are highly versatile and can be used for a wide range of applications, including horizontal, inclined, and vertical conveying. They can handle various types of materials, from bulk solids to individual items.

2. High Load Capacity: Conveyor chains are known for their high load-carrying capacity. They are designed to handle heavy loads and can be used in applications where other conveyor systems may not be suitable.

3. Durability: Conveyor chains are built to withstand harsh operating conditions and heavy-duty use. They are made from strong and durable materials, such as steel or alloy, that can withstand abrasion, impact, and wear.

4. Flexibility: Conveyor chains offer flexibility in terms of layout and design. They can be configured to accommodate complex conveyor paths, curves, and multiple discharge points, allowing for efficient material flow and system customization.

5. Cost-Effective: Conveyor chains often provide a cost-effective solution for material handling compared to other conveyor systems. They have a relatively low initial cost, require less maintenance, and have a longer service life.

However, it’s important to note that conveyor chains may not be suitable for every application. Other types of conveyor systems, such as belt conveyors, screw conveyors, or pneumatic conveyors, may offer specific advantages depending on the application requirements, material characteristics, or environmental factors.

Ultimately, the selection of the appropriate conveyor system depends on factors such as load capacity, material properties, layout constraints, cost considerations, and specific application needs.

China high quality Conveyor Agriculture Chain Roller Chain with Scraper  China high quality Conveyor Agriculture Chain Roller Chain with Scraper
editor by CX 2024-01-11